Five Novel Taxanes from Taxus canadensis

Lolita O. Zamir,*,t,Ғ J unzeng Zhang, ${ }^{\dagger}$ J ianhui Wu, ${ }^{\dagger}$ Françoise Sauriol ${ }^{\ddagger}$ and Orval Mamer§
Université du Québec, INRS-Institut Armand-Frappier-Santé Humaine, 531 Boulevard des Prairies, Laval, Québec, Canada, H7N 4Z3, Department of Chemistry, McGill University, 801 Sherbrooke Street West, M ontreal, Québec, Canada, H3A 2K 6, and Biomedical Mass Spectrometry Unit, McGill University, 1130 Pine Avenue West, M ontreal, Québec, Canada, H3A 1A3

Received April 9, 1999

Abstract

Five novel taxanes (1-5) have been isolated from the needles of Taxus canadensis, and their structures were elucidated on the basis of spectroscopic data. Two of these taxanes have structural features seldom found in yews, with a C-12, C-13 double bond and a hydroxymethylene at C-4. In addition, the 2D structures generated by molecular modeling of taxanes $\mathbf{1}$ and $\mathbf{2}$, differing mostly in the location of the double bond in ring A, were compared. The different conformation of ring A derived from the C-12, C-13 double bond is particularly interesting because it implies that if a Taxol (paditaxel) side chain were attached to C-13 it would have a different orientation from that in paclitaxel.

Since the discovery of the promising anticancer activity of Taxol ${ }^{\circledR}$ (paclitaxel), a unique diterpene alkaloid originally extracted from the bark of the pacific yew Taxus brevifolia, a large number of taxanes possessing various skeleton systems have been isolated from different yew species. ${ }^{1,2}$ Taxus canadensis Marsh. (Taxaceae) has been shown to have specific taxanes not always found in other yews. 9-Dihydro-13-acetylbaccatin III, 3,4 fiveto seven times more abundant than paclitaxel, and the bicyclic ${ }^{5-7}$ canadensene, epicanadensene, isolated from the needles of the Canadian yew, are the most striking examples. It is therefore important to try to el ucidate the different taxanes produced by this species. In our continuing investigation on the metabol ites of the needles of T. canadensis, we have previously reported 21 taxanes. ${ }^{3-9}$ In this article, the isolation and structure elucidation of another five new taxanes (1-5) are reported.

Results and Discussion

Compound $\mathbf{1}$ was shown to have the composition $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{12}$ from HRFABMS analysis. Its ${ }^{1} \mathrm{H}$ NMR, COSY, and HMQC spectra (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ data, see Table 1)

[^0]revealed the presence of five acetyl groups and four methyls (on quaternary carbons), two of which overlapped at the same chemical shift ($\delta 1.46 \mathrm{ppm}$). Two of the methyl singlets ($\delta 1.17$ and 1.46 ppm) were COSY-correlated peaks, which means that they are geminal methyls (Me16 and $\mathrm{Me}-17$ located at $\mathrm{C}-15$). The presence of two aliphatic methylene groups ($\delta 2.20$ and $1.78 \mathrm{ppm}, 6-2 \mathrm{H}$ and $\delta 2.57$ and $2.38 \mathrm{ppm}, 14-2 \mathrm{H}$) and an olefinic type of methylene group (a pair of broad singlets at $\delta 5.27$ and $5.04 \mathrm{ppm}, 20-2 \mathrm{H}$) were also observed. In the deshielded region, five protons ($\delta 5.72,4.22,4.72,4.70$, and 5.57 ppm) located on oxygenated carbons ($\mathrm{C}-2,-5,-7,-9$, and -10) were identified through the analysis of their COSY correlations with the adjacent protons.
In the HMBC experiment on 1, it was revealed that the two gem-dimethyl protons were both coupled to the same three carbons: the C-1 protonated carbon ($\delta 50.1 \mathrm{ppm}$) and two quaternary alkyl carbons ($\delta 78.4$ and 40.9 ppm). These two quaternary carbons were assigned to C-11 and C-15, respectively. From the carbon chemical shifts of C-11, the presence of an oxygenated quaternary carbon was suspected. One methyl singlet ($\mathrm{Me}-18, \delta 1.55 \mathrm{ppm}$) was correl ated to the quaternary saturated carbon ($\delta 78.4 \mathrm{ppm}$) assigned to C-11 and was also coupled to two olefinic quaternary carbons ($\delta 124.0$ and 144.1 ppm) assigned to $\mathrm{C}-12$ and $\mathrm{C}-13$, respectively. The very deshielded position observed for one of the ol efinic carbons (C-13) indi cated the presence of an acetoxy group. The other four acetoxy groups were revealed at the C-2, $-7,-9$, and -10 positions. One of the hydroxyl protons appearing as a relatively sharp singlet ($\delta 2.14 \mathrm{ppm}$) displayed HMBC correlations to the protonated $\mathrm{C}-10$ and to three quaternary carbons, $\mathrm{C}-11,-12$, and -13. These observations allowed us to confirm the presence of a hydroxyl group at C-11. Thus, the structure of compound $\mathbf{1}$ was established as shown. Comparing 1 with the only two taxanes (taxuspine D^{10} and taxuspine P^{11}) isolated from the stems of the Japanese yew, Taxus cuspidata, we found that their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are quite similar, except for the chemical shift of H-5 and the signals for the cinnamoyl group in taxuspine D and the 3-N ,N-(dimethylamino)-3-phenylpropanoyl group in taxuspine P. They all possess the same unique skeleton with an enolacetate moiety in ring A. Because its relative stereochemistry was elucidated by NOESY data, 1 was named 5-decinnamoyltaxuspine D.

Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data for Taxane $\mathbf{1}$ in CDCl_{3}

position	$\delta^{1} \mathrm{H}$ mult. ${ }^{\text {a }}$ (J in Hz)	$\delta^{13} \mathrm{C}^{\text {b }}$	HMBC	NOESY
1	1.88 d (7.8)	50.1	2, 3, 11, 13, 16, 17	2, 14a, Me-16, Me-17
2	$5.72 \mathrm{~d}(7.2)$	68.8	3, 8, 14, 170.2	1, 3, Me-19
3	3.61 d (7.2)	40.5	1, 2, 4, 5, 8, 9, 19, 20	2, 7, 14b, 20b
4		147.4		
5	4.22 br t (8.3)	65.8	4, 6, 20	2, 6a, 20a, Me-19
6 a	2.20 m	36.2		5, 6b, 7, Me-19
6b	1.78 m		5, 7, 8	5, 6a, 7
7	4.72 dd (10.0; 8.1)	70.4	3, 8, 9, 19, 170.2	3
8		43.1		
9	4.70 d (4.9)	74.5	3, 7, 8, 10, 11, 169.2	10, Me-17, $\mathrm{Me}-19$
10	5.57 d (4.9)	76.4	3, 8, 9, 11, 170.2	9, Me-18, $\mathrm{OH}-11$
11		78.4		
12		124.0		
13		144.1		
14a	2.57 ddd (18.5; 7.8; 1.2)	25.5		1, 14b, Me-16
14b	2.38 d (18.5)		1, 2, 12, 15	3, 14a, 20b, Me-17
15		40.9		
16	1.17 s	31.2	1, 11, 15, 17	1, 14a, Me-17
17	1.46 os	23.8	1, 11, 15, 16	see Me-19
18	1.55 s	11.2	11, 12, 13	10
19	1.46 os	14.5	3, 7, 8, 9	2, 5, 9, Me-16
20a	5.27 br s	109.6	4, 5	20b
20b	5.04 br s		3, 4, 5	3, 14b, 20a
OAc	2.20 s	20.5	168.5	
	2.17 s	20.8	170.2	
	$1.97 \mathrm{~s} \times 2$	20.5	170.2	
	1.94 s	20.8	169.2	
OH-11	2.14 s		10, 11, 12, 15	10, Me-16

${ }^{\text {a }}$ Mult, multiplicity: br, broad; d, doublet; m, multiplet; o, overlapping; s, singlet; t, triplet. The precision of the coupling constants is $\pm 0.5 \mathrm{~Hz}$. ${ }^{\mathrm{b}}$ The ${ }^{13} \mathrm{C}$ chemical shifts were extracted from the HMQC and HMBC (for quaternary carbons) experiments ($\pm 0.2 \mathrm{ppm}$).
Table 2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data of Taxane $\mathbf{2}$ in CDCl_{3}

position	$\delta^{1} \mathrm{H}$ multa ${ }^{\text {(}}$ in Hz)	$\delta{ }^{13} \mathrm{C}^{\text {b }}$	HMBC	NOESY
1	1.77 dd (8.6; 1.6)	47.8	2, 3, 11, 13, 15	2, 14a, Me-16, Me-17
2	5.41 dd (5.5; 1.6)	70.7	1, 3, 14, 169.4	1, 3, 9, 20b, Me-17, Me-19
3	3.40 d (5.5)	39.7	1, 2, 4, 5, 7, 19, 20	2, 7, 14b, Me-18
4		145.7		
5	4.24 t (2.9)	75.8	3, 20	6a, 6b, 20a
6 a	2.10 om	39.2		
6b	1.59 o m			
7	4.44 dd (11.1; 5.1)	70.0	3, 9, 19	3, 6a, 6b, 10, Me-18
8		47.5		
9	4.37 d (10.3)	78.1	7, 8, 10, 19	2, 6a, Me-17, Me-19
10	6.08 d (10.2)	75.0	9, 11, 12, 15, 170.1	3, 7, Me-18
11		134.8		
12		137.8		
13	5.77 br ddq (10.5; 5.1; 1.2)	69.5	11, 12, 14, 170.1	14a, 14b, Me-16, Me-18
14a	2.63 ddd (15.6; 10.5; 8.8)	28.5	1, 2, 12, 13	1, 13, 14b, Me-16
14b	1.46 dd (15.6; 5.3)		1, 2, 13, 15	3, 14a, Me-18
15		37.3		
16	1.03 s	31.8	1, 11, 15, 17	1, 13, 14a, Me-17
17	1.60 os	25.9	1, 11, 15, 16	1, 2, 9, M e-16, M e-19
18	2.13 d (1.4)	15.8	11, 12, 13	7, 10, 13
19	1.12 s	12.5	3, 7, 8, 9	2, 6b, 9, 20b, Me-17
20a	5.25 br s	116.0	3, 5	5, 20b
20b	4.96 t (1.5)		3, 4, 5	2, 6a, 20a, Me-19
OAc	2.13 s	21.1	170.1	
	2.09 s	21.1	170.1	
	2.06 s	20.9	169.4	

[^1] constants is $\pm 0.5 \mathrm{~Hz}$. ${ }^{\mathrm{b}}$ The ${ }^{13} \mathrm{C}$ chemical shifts were extracted from the HMQC and HMBC (for quaternary carbons) experiments (± 0.2 ppm).

Compound 2 was determined to have the molecular formula of $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{9}$ on the basis of HRFABMS data. The ${ }^{1} \mathrm{H}$ NMR spectrum (NMR data see Table 2) showed proton signals due to an exomethylene ($\delta 5.25$ and 4.96 ppm), four methyls ($\delta 1.03,1.12,1.60$, and 2.13 ppm), three acetyl methyls ($\delta 2.06,2.09$, and 2.13 ppm), and six oxymethines ($\delta 6.08,5.77,5.41,4.44,4.37$, and 4.24 ppm). Detailed analysis of the COSY, HMQC, and HMBC spectra, especially the HMBC correlations of two gem-methyls (Me-16 and $\mathrm{Me}-17, \delta 1.03$ and 1.60 ppm) to $\mathrm{C}-1$ ($\delta 47.8 \mathrm{ppm}$), -11
($\delta 134.8 \mathrm{ppm}$), and -15 ($\delta 37.3 \mathrm{ppm}$) suggested that 2 possesses the normal 6/8/6 taxane skeleton. The three acetoxy groups were revealed at C-2, -10 , and -13 from the HMBC cross-peak signals of H-2 ($\delta 5.41 \mathrm{ppm}$), -10 ($\delta 6.08$ $\mathrm{ppm})$, and $-13(\delta 5.77 \mathrm{ppm})$ to the three acetyl carbonyl carbons ($\delta 169.4,170.1 \mathrm{ppm}$). The C-5, -7 , and -9 positions were found to be connected to hydroxyl groups deduced from the upfield shifts of the oxymethines. The structure of this compound was thus established as $\mathbf{2}$ and named 7,9-deacetyl-5-decinnamoyl taxinine J. The relative stereo-

Table 3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data of Taxane $\mathbf{3}$ in CDCl_{3}

position	$\delta^{1} \mathrm{H}$ multa ${ }^{\text {(}}$, in Hz)	$\delta{ }^{13} \mathrm{C}^{\text {b }}$	HMBC	NOESY
1		67.9		
2	6.10 d (7.5)	68.5	165.9	3, 9, Me-16/17, Me-19
3	3.12 d (7.5)	44.4	2, 8, 19, 20	2, 7, 10, 14b
4		79.9		
5	4.88 d (8.3)	84.7	3, 20	6a, 6b, 20b
6a	2.59 dt (15.4; 7.8)	34.5		5, 6b, 7
6b	1.87 o m			5, 6a
7	5.33 t (8.5)	71.8		3, 6a, 6b, 10
8		42.6		
9	4.30 d (9.8)	78.6	7, 10	2, 10, M - 19
10	4.60 d (10.0)	68.2	9, 12	3, 7, 9, Me-18
11		137.1		
12		147.5		
13	4.57 br s	77.5	1, 11, 12	14a, Me-16/17, Me-18
14a	2.29 dd (13.9; 6.8)	39.7	15	
14b	1.74 dd (14.1; 6.6)			3, 14a
15		75.8		
16/17	1.04 s	27.4	1, 15, 17	13, 14a
17/16	1.08 s	24.7	1, 15, 16	2,14a
18	1.97 s	11.0	11, 12, 13	13
19	1.93 s	12.9	3, 7, 8, 9	2, 9, 20a
20a	4.50 d (7.3)	74.8		2, 20b, Me-19
20b	4.12 d (7.3)		4	20a
OAc	2.21 s	22.2	171.0	
	2.06 s	21.4	170.3	
OBz				
C-1		165.9		
0	8.01 d (7.9)	129.6		
m	7.47 t (7.6)	129.6		
p	7.60 t (7.1)	133.4		

${ }^{\text {a }}$ Mult, multiplicity: br, broad; d, doublet; m, multiplet; o, overlapping; s, singlet; t, triplet. The precision of the coupling constants is $\pm 0.5 \mathrm{~Hz}$. ${ }^{\text {b }}$ The ${ }^{13} \mathrm{C}$ chemical shifts were extracted from the HMQC and HMBC (for quaternary carbons) experiments ($\pm 0.2 \mathrm{ppm}$).

1

2

Figure 1. Tridimensional structures of taxanes $\mathbf{1}$ and $\mathbf{2}$ derived by molecular modeling.
chemistry of $\mathbf{2}$ was also demonstrated by NOESY correlations.

Compounds $\mathbf{1}$ and $\mathbf{2}$ both possess the 6/8/6 taxane ring system, with the only difference in the two skel etons being the position of one double bond ($\Delta^{12,13}$ in 1 and $\Delta^{11,12}$ in 2). A large number of analogues of $\mathbf{2}$ have been found from nature, but $\mathbf{1}$ is now only the third example based on this unique taxane skeleton. Thus, molecular modeling was applied to study and compare the conformations of these two compounds. The final conformations of $\mathbf{1}$ and $\mathbf{2}$ are shown in Figure 1. The distances between $\mathrm{H}-2$ and $\mathrm{H}-9$ for 1 and 2 are 4.90 and $2.77 \AA$, respectively. The torsion angles $\mathrm{H}-9-\mathrm{C}-9-\mathrm{C}-10-\mathrm{H}-10$ for $\mathbf{1}$ and $\mathbf{2}$ were 81.0° and $155.2{ }^{\circ}$ respectively. Inspection of NOE spectra of 1 showed that there was no NOE signal between $\mathrm{H}-2$ and $\mathrm{H}-9$, which supports the large distance between H-2 and H-9. The coupling constants between $\mathrm{H}-9$ and $\mathrm{H}-10$ for $\mathbf{1}$ and $\mathbf{2}$ were 4.9 and 10.2 Hz , respectively. These coupling constant data also support the large difference between the torsion angles H-9-C-9-C-10-H-10 in $\mathbf{1}$ and 2. Ring B in $\mathbf{1}$ has more of
a crown conformation. Thelarge (10.2 Hz) coupling between $\mathrm{H}-9$ and $\mathrm{H}-10$ in 2 indicates a trans-diaxial orientation whereas the smaller coupling in $\mathbf{1}(4.9 \mathrm{~Hz})$ can be interpreted as $\mathrm{H}-9$ and $\mathrm{H}-10$ being pseudoequatorial. This can also explain the very small NOE observed between H-2 and $\mathrm{H}-9$, the strong NOE between $\mathrm{H}-9$ and $\mathrm{H}-10$, and the small NOE between $\mathrm{H}-7$ and $\mathrm{H}-10$. The unusual shielding observed for $\mathrm{H}-9$ (4.7 ppm instead of 5.9 ppm) is due partly to the conformational change but most importantly from the anisotropy of the $\mathrm{C}-12, \mathrm{C}-13$ double bond: $\mathrm{H}-9$ is located above the double bond in the shielding zone; $\mathrm{H}-7$ is similarly influenced by the change in conformation of the B ring and also by the double bond at C-12, C-13.
In chloroform, compound $\mathbf{2}$ adopts a U-shape. However, the attachment of ring A to B in $\mathbf{1}$ is flatter than the one in 2. The torsion angles C-12-C-11-C-10-C-9 for $\mathbf{1}$ and $\mathbf{2}$ were -66.0° and -102.9°, respectively. This can be explained by the different position of the double bond in the A rings between these two compounds. In compound $\mathbf{2}$, the double bond is between $\mathrm{C}-11$ and $\mathrm{C}-12$. Because $\mathrm{C}-12$ is shared by rings A and B, the double bond between $C-11$ and $\mathrm{C}-12$ would constrain the conformation of ring A relative to ring B. This would contribute to the U-shape of compound 2. For compound $\mathbf{1}$, the double bond is between $\mathrm{C}-12$ and $\mathrm{C}-13$, and the bond between $\mathrm{C}-11$ and $\mathrm{C}-12$ is single. Therefore, ring A can adopt a flatter conformation relative to ring B . Consequently, the orientation of the ring A C-13 side chain will be changed if the double bond in ring A is at $\mathrm{C}-12, \mathrm{C}-13$ instead of at $\mathrm{C}-11, \mathrm{C}-12$. H oemann et al. ${ }^{12}$ showed that the orientation of the $\mathrm{C}-13$ side chain is essential for the biological activity of paclitaxel. The skeleton from $\mathbf{1}$ might fit to optimize the orientation of the C-13 side chain. Indeed, Wicnienski et al. showed that 7-deoxy- $\Delta^{12,13 \text {-isotaxol is useful for the treatment of some }}$ cancers. ${ }^{13}$

Table 4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data of Taxane $\mathbf{4}$ in CDCl_{3}

position	$\delta^{1} \mathrm{H}$ mult ${ }^{\text {a }}(\mathrm{in} \mathrm{Hx}$)	$\delta^{13} \mathrm{C}^{\text {b }}$	HMBC	NOESY
1		67.6		
2	6.02 d (7.7)	67.8		3, 9, 20a, Me-16, Me-17, Me-19
3	3.09 d (7.7)	43.7	$1,2,5,7,8,19,20$	2, 7, 10, 14b
4		79.9		
5	4.93 d (7.3)	85.0	4, 7	3, 6a, 6b, 20b
6 a	2.52 dt (15.6; 8.0)	34.7		5, 6b, 7
6 b	1.88 m			5, 6a
7	5.45 t (7.6)	70.2		3, 6a,10
8		43.6		
9	5.97 d (10.5)	76.6		2, 10, Me-19
10	6.25 d (10.5)	68.7		3, 7, Me-18
11		133.9		
12		150.6		
13	4.67 m	77.9		14a, 14b, Me-16, Me-17, Me-18
OH-13	1.78 o m			
14 a	2.22 m	39.6		13, 14b, Me-16, Me-17
14 b	1.55 o m		1, 2, 13, 15	3, 13, 14a, Me-16, Me-17
15		75.1		
16/17	1.05 br s	27.1	1, 15, 17	13, 14a, Me-17
17/16	1.12 s	25.0	1, 15, 16	2, 14a, Me-16
18	1.94 br s	11.4	11, 12, 13	10, Me-16/17
19	1.66 s	12.5	3, 7, 8, 9	2, 9, 20a
20a	$4.51 \mathrm{br} \mathrm{d} \mathrm{(7.6)}$	74.9	3, 5	20b, Me-19
20b	4.38 d (7.6)		3, 4	5, 20a, Me-OAc
OAc	2.15 s	22.2	171.2	
	2.08 s	21.3	169.8	
	2.02 s	20.7	169.6	
	2.01 s	21.3	169.6	
	1.95 s	20.4	167.7	
OH-15	2.65 s		15, 16/17	2,9

${ }^{\text {a }}$ Mult, multiplicity: br, broad; d, doublet; m, multiplet; o, overlapping; s, singlet; t, triplet. The precision of the coupling constants is $\pm 0.5 \mathrm{~Hz}$. ${ }^{\mathrm{b}}$ The ${ }^{13} \mathrm{C}$ chemical shifts were extracted from the HMQC and HMBC (for quaternary carbons) experiments ($\pm 0.2 \mathrm{ppm}$).

Compound $\mathbf{3}$ was shown to possess the molecular formula of $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{11}$ by HRFABMS. Analysis of its ${ }^{1} \mathrm{H}$ NMR, COSY, and HMQC spectra (for NMR data see Table 3) revealed four methyls ($\delta 1.04,1.08,1.93$, and 1.97 ppm), two acetyl methyls ($\delta 2.06$ and 2.21 ppm), and one benzoyl ($\delta 8.01$, 7.60 , and 7.47 ppm). A pair of doublets at $\delta 4.50$ and 4.12 $\mathrm{ppm}(\mathrm{J}=7.3 \mathrm{~Hz}$) indicated the presence of an oxetane ring. Because the HMBC spectrum showed correlations of Me 16 and $\mathrm{Me}-17$ to two identical quaternary carbons, which were assigned to $\mathrm{C}-1(\delta 67.9 \mathrm{ppm})$ and $\mathrm{C}-15(\delta 75.8 \mathrm{ppm})$, compound $\mathbf{3}$ was suspected of being an abeo-taxane. ${ }^{14}$ Other HMBC correlations of H-10 ($\delta 4.60 \mathrm{ppm}$) to C-9 ($\delta 78.6$ ppm) and $\mathrm{C}-12$ ($\delta 147.5 \mathrm{ppm}$), and $\mathrm{H}-13(\delta 4.57 \mathrm{ppm})$ to $\mathrm{C}-1(\delta 67.9 \mathrm{ppm}), \mathrm{C}-11(\delta 137.1 \mathrm{ppm})$, and $\mathrm{C}-12(\delta 147.5$ ppm) also supported this hypothesis. The benzoyloxy group was revealed to be located at C-2, inasmuch as the HMBC spectrum showed correlations between H-2 ($\delta 6.10 \mathrm{ppm}$) and the benzoyl carbonyl signal at $\delta 165.9 \mathrm{ppm}$. The upfield shift of the signals of $\mathrm{H}-9(\delta 4.30 \mathrm{ppm}),-10(4.60 \mathrm{ppm})$, and - 13 (4.57 ppm) suggested a free hydroxyl group at C-9, -10 , and -13 , respectively. The two acetoxy groups must be at C-7 and C-4 as shown by the chemical shifts of H-7 (δ 5.33 ppm) and C-4 ($\delta 79.9 \mathrm{ppm}$). So, the structure of this compound was established as $\mathbf{3}$ and named 9,10,13-tride-acetyl-abeo-baccatin VI. The relative stereochemistry of $\mathbf{3}$ was also determined by NOESY correlations.

HRFABMS showed the molecular formula of compound 4 to be $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{13}$. Detailed analysis of the NMR spectra ${ }^{1}{ }^{1} \mathrm{H}, \mathrm{COSY}, \mathrm{HMQC}$, and HMBC, see Table 4) suggested that $\mathbf{4}$ possesses the same abeo-taxane skeleton as $\mathbf{3}$. The differences are only in the oxygenation substitutuents: there are three acetoxy groups at C-2 (no benzoyloxy group as in 3), C-9, and C-10 (no hydroxyl groups at C-9 and C-10 as in 3), respectively. We also noted a COSY cross-peak from a singlet OH group located at $\delta 2.65 \mathrm{ppm}$ with one on the gem-dimethyl group ($\delta 1.12 \mathrm{ppm}$), and HMBC correlations of this OH proton to $\mathrm{C}-15$ and one of the gem-
dimethyl carbons ($\delta 25.0 \mathrm{ppm}$). These observations confirmed an abeo-taxane structure in which an OH group is located at C-15 ($\delta 75.1$ ppm). Thus, its structure was elucidated as 4 and named 2-acetyl-13-deacetyl-2-deben-zoyl-abeo-baccatin VI. The NOESY correlations were used to establish the relative stereochemistry of this compound.

The molecular formula of compound $\mathbf{5}$ was established as $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{12}$ by HRFABMS. Detailed analysis of the ${ }^{1} \mathrm{H}$ NMR, COSY, and HMQC spectra (Table 5) revealed that 5 was a normal taxane with a $6 / 8 / 6$ ring system and with an opened oxetane ring ($\mathrm{H}-20$ appeared as complex signals at $\delta 3.47$ and 3.41 ppm , rather than a pair of doublets as seen in taxanes with an oxetane ring). Four methyls (δ 1.06, 1.13, 1.60 , and 2.14 ppm) and four acetyl methyls (δ 2.10, 2.11, 2.14, and 2.20 ppm) were shown al ong with the connectivities of the protons from $\mathrm{H}-1$ to $\mathrm{H}-7, \mathrm{H}-9$ to $\mathrm{H}-10$, $\mathrm{H}-13$ to $\mathrm{H}-14$, and $\mathrm{H}-4$ to $\mathrm{H}-20$. The HMBC correlations of $\mathrm{H}-20$ to $\mathrm{C}-4$ and $\mathrm{C}-5$, and $\mathrm{Me}-16$ and $\mathrm{Me}-17$ to $\mathrm{C}-1,-11$, and - 15 further confirmed the skeleton. The locations of the two acetoxy groups were reveal ed to be on $\mathrm{C}-2$ and $\mathrm{C}-10$ from the connection signals in the HMBC. The presence of the other two acetoxy groups at $\mathrm{C}-5$ and $\mathrm{C}-13$ was deduced from the chemical shifts of $\mathrm{H}-5(\delta 5.11 \mathrm{ppm})$ and $\mathrm{H}-13(\delta$ $5.89 \mathrm{ppm})$. The structure of this compound was thus assigned as 5 and named 7,9-deacetyltaxuspine L. Its relative stereochemistry was established on the basis of NOESY spectrum and by close comparison with the spectral data of that of taxuspine $L{ }^{15}$ obtained from the stems of T. cuspidata.

Compounds 1-5 are novel taxanes isol ated for the first time from the needles of T. candensis. There are only two other taxanes ${ }^{10,11}$ (albeit with different substituents) reported with a double bond at $\mathrm{C}-12$ and $\mathrm{C}-13$ in ring A in the stems of the J apanese yew and relatively few taxanes with a $\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH}$ substituent at $\mathrm{C}-4 .{ }^{15-21}$

Table 5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data of Taxane $\mathbf{5}$ in CDCl_{3}

position	$\delta^{1} \mathrm{H}$ multa ${ }^{\text {(}}$ in Hz)	$\delta{ }^{13} \mathrm{C}^{\text {b }}$	HMBC	NOESY
1	1.91 br d (~ 8.1)	47.6		2, 14a, Me-16, Me-17
2	5.32 dd (5.9; 2.9)	71.3	8, 14, 170.1	1, 3, 9, М е-17, Me-19
3	2.62 od	38.1		6a, 7, 14b, Me-18
4	2.00 om	46.6		see 6a
5	5.11 m	71.3		6a, 6b, 20b
6a	1.98 o m	31.4		3, 5, 6b, 7, 14b, 20a
6 b	1.77 ddd (14.7; 11.2; 2.7)			5, 6a, 19, 20b
7	4.14 dd (11.2; 4.6)	70.6	6, 9, 19	3, 6a,10, Me-18
8		45.2		
9	4.43 d (10.3)	78.0	7, 8, 10, 19	2, 10, Me-17, Me-19
10	5.97 d (10.2)	75.5	9, 11, 12, 15, 169.6	7, 9, Me-18
11		133.9		
12		137.6		
13	5.89 br t (8.6)	70.2		14a, Me-16, Me-18
14a	2.60 o m	27.5	1, 2, 12, 13	see 3
14b	1.47 dd (15.4; 8.1)			14a
15		37.7		
16	1.13 s	31.4	1, 11, 15, 17	13, Me-17
17	1.60 s	26.8	1, 11, 15, 16	1, 2, 9, M e-16
18	2.14 br s	14.8	11, 12, 13	7,10
19	1.06 s	13.8	3, 7, 8, 9	2, 6b, 9, 20
20a	3.47 m	64.2	5	20b, Me-19
20b	3.41 m		4, 5	5, 6b, 20a, Me-19
OAc	2.20 s	21.5	170.0	
	2.14 os	20.9	169.6	
	2.11 os		170.5	
	2.10 s		170.1	

${ }^{\text {a }}$ Mult, multiplicity: br, broad; d, doublet; m , multiplet; o, overlapping; s , singlet; t , triplet. The precision of the coupling constants is $\pm 0.5 \mathrm{~Hz}$. ${ }^{\text {b }}$ The ${ }^{13} \mathrm{C}$ chemical shifts were extracted from the HMQC and HMBC (for quaternary carbons) experiments ($\pm 0.2 \mathrm{ppm}$).

Experimental Section

General Experimental Procedures. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{HMQC}$, HMBC, and NOESY NMR spectral data were obtained on a Varian UNITY-500 spectrometer operating at 499.84 M Hz for ${ }^{1} \mathrm{H}$ and at 125.69 MHz for ${ }^{13} \mathrm{C}$. The spectra were obtained on $1-2 \mathrm{mg}$ samples dissolved in CDCl_{3}, which was used as the internal reference. In the proton NMR spectra, the multiplicity shown in Tables 1-5 is the apparent one. Low-resolution xenon FABMS were obtained in glycerol with a VG ZAB-HS instrument. Samples were dissolved in $0.2 \mu \mathrm{~L}$ of DMSO before adding of $0.5 \mu \mathrm{~L}$ of glycerol. HRFABMS were similarly obtained in glycerol-DMSO at a resolving power of 12000. Optical rotations were recorded on a J ASCO DIP-370 digital polarimeter.

Molecular modeling was performed on a Silicon Graphics R5000 workstation using the Discover program within Insight II package (version 97.0). ${ }^{22}$ The structures were generated by modifying the crystal structure of 2-deacetoxydecinnamoyltaxinine J. ${ }^{23}$ First, the initial structures were subjected to simulated annealing without constraints (the maximum temperature was 900 K). Cluster analysis reveal ed the existence of two two-conformer families for $\mathbf{1}$ and one for $\mathbf{2}$. The lowest energy conformer for $\mathbf{2}$ was selected for further calculations. Because there were two conformer families for 1, the lowest conformers in each family were compared with the NOE data and the most consistent one was selected for further calculations. Second, the structures sel ected from simulated anneal ing were subjected to NOE-restraint molecular dynamics at 400 K for 100 ps , using the consistent valence force field (CVFF). The instant conformations were saved every 200 fs. The distance restraints from NOE spectra in CDCl_{3} were classified as short, medium, and long, with distance ranges of $1.5-2.8,2.8-3.5$, and $3.5-5.0 \AA$, respectively. For compound 1, 18 NOE distance restraints were employed in the calculation, whereas 21 NOE distance restraints were used for compound 2. During the simulation, distance restraints were applied with a force constant of $100 \mathrm{kcal} / \AA / / \mathrm{mol}$. The lowest energy conformations from the trajectories were selected for further minimizations. During minimization, the solute was solvated with a periodic $35 \times 35 \times 35 \AA^{3} \mathrm{CDCl}_{3}$ box containing $237 \mathrm{CDCl}_{3}$ molecules. The solvated systems were then energy minimized using 1000 steps of steepest descent and 1000 steps
of conjugate algorithms with a root-mean-square gradient deviation of $0.001 \AA \AA$. The NOE-restraints remained in place during these minimizations.

Unless otherwise specified, liquid col umn chromatography was performed on Si gel 60, 230-400 mesh (EM Science). Preparative HPLC was carried out on a Waters Delta Prep 3000 instrument coupled to a UV 486 tunable absorbance detector set at 227 nm (Waters) using a Partisil 10 ODS-2 MAG-20 preparative col umn ($22 \times 500 \mathrm{~mm}$). Semipreparative HPLC was performed on the same system as the preparative one but using two Partisil 10 ODS-2 MAG-9 semipreparative columns (Whatman) connected in series ($9.4 \times 500 \mathrm{~mm}$). Preparative TLC was carried out on Si gel $60 \mathrm{~F}_{254}$ precoated TLC plates, 0.25 mm (EM Science). The purified compounds were visualized by TLC on precoated TLC plates (Si gel 60 $\mathrm{F}_{254}, 0.25 \mathrm{~mm}, \mathrm{EM}$ Science) with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in EtOH.
Plant Material. T. canadensis Marsh. is native to Northeast America including the Quebec region. The plant was collected in September 1997, in St.-J ean Quebec, and stored at $4{ }^{\circ} \mathrm{C}$ before drying when needed. In the herbarium of Montreal Botanical Garden several specimens are deposited.
Extraction and Isolation. Ground dried needles of T. canadensis (4.7 kg) were extracted and treated as described previously ${ }^{7}$ to yield 119 g of a dark brown extract. A portion $(50 \mathrm{~g})$ of this extract was separated on a Si gel column (821 g , $10 \times 21 \mathrm{~cm}$) and eluted with hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,2 \mathrm{~L}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 L), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOAc [9:1 (2 L), 8:2 (2 L)], $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}-$ MeOH [700:295:5 (1 L), 700:290:10 (1 L), 700:280:20 (1 L), 700: 250:50 (1 L), 600:350:50 (1 L), 500:400:100 (1 L), 400:400:200 (1 L), 300:500:200 (1 L)], and EtOAc-MeOH [7:3 (1 L), 1:1 (2 L)] to give fractions A (11.6-12.0 L), B (12.0-12.6 L), and C (12.6-13.4 L).

Fraction A (5.5 g) was applied to a Si gel column (105 g, 4 $\times 17.5 \mathrm{~cm}$) with hexane-2-propanol [9:1 (100 mL), 8:2 (200 $\mathrm{mL}), 7: 3(300 \mathrm{~mL}), 6: 4(300 \mathrm{~mL}), 1: 1(300 \mathrm{~mL})]$ and EtOAc$\mathrm{MeOH}(1: 1,300 \mathrm{~mL})$ to yield fraction D ($400-540 \mathrm{~mL}$). Fraction D (1.6 g) was then purified on a Si gel column (54 g , $2.5 \times 36 \mathrm{~cm})$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ EtOAc [8:2 (200 mL), 7:3 $(200 \mathrm{~mL})$, 6:4 (200 mL), 1:1 (200 mL), 4:6 (200 mL), 2:8 (200 mL)] and EtOAc (200 mL) to give fraction E ($500-600 \mathrm{~mL}, 200 \mathrm{mg}$), which was then further purified on a preparative HPLC column eluting with a 70-min linear gradient of MeCN (25 to 100%) in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate of $18 \mathrm{~mL} / \mathrm{min}$ followed by
preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 96: 4\right)$ to afford compound $\mathbf{1}$ [15.1 mg , visualized on a TLC plate as a brown to black spot with $R_{f} 0.80$ (EtOAc)]; $[\alpha]^{24}{ }_{D}+7.8^{\circ}$ (c $0.10, \mathrm{CHCl}_{3}$). The structure of 1 was fully characterized by NMR (Table 1) and confirmed by high-resolution mass spectrometry data. FABMS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} 617.25731 ; \mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{12} \mathrm{Na}$ requires 617.25739.

Fraction B (2.7 g) was subjected to a Si gel column (108 g , $4.5 \times 18 \mathrm{~cm})$ with hexane-EtOAc [8:2 $(200 \mathrm{~mL}), 1: 1(300 \mathrm{~mL})$, 4:6 (200 mL), 3:7 (200 mL), 2:8 (200 mL), 1:9 (200 mL)], EtOAc (600 mL), EtOAc-MeOH ($8: 2,400 \mathrm{~mL}$) to give fractions B1 ($1380-1500 \mathrm{~mL}$) and B2 ($1500-1800 \mathrm{~mL}$). Fraction B1 (205 mg) was separated on a preparative HPLC column eluting with a $70-\mathrm{min}$ linear gradient of MeCN (25 to 100%) in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate of $18 \mathrm{~mL} / \mathrm{min}$ to produce residue $\mathrm{F}\left(3.0 \mathrm{mg}, \mathrm{t}_{\mathrm{R}} 27.8\right.$ min) and $G\left(6.9 \mathrm{mg}, \mathrm{t}_{\mathrm{R}} 24.8 \mathrm{~min}\right)$. Residue F was then purified by preparative TLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 98: 2$) to yield compound 3 (1.6 mg). Residue G was further purified on a semipreparative HPLC system eluting with a $50-\mathrm{min}$ linear gradient of MeCN (25 to 100%) in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate of $3 \mathrm{~mL} / \mathrm{min}$ to produce compound $\mathbf{4}(4.7 \mathrm{mg})$. Fraction $\mathrm{B} 2(1.05 \mathrm{~g})$ was then applied to a Si gel column ($55 \mathrm{~g}, 2.5 \times 26 \mathrm{~cm}$) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ [1000:5 (200 mL), 1000:10 (300 $\mathrm{mL}), 1000: 15(200 \mathrm{~mL}), 1000: 20(200 \mathrm{~mL}), 1000: 30(200 \mathrm{~mL})$, 1000:40 (200 mL), 1000:50 (200 mL), 1000:60 (200 mL), 1000: $70(200 \mathrm{~mL})$] to yield fraction $\mathrm{H}(1220-1380 \mathrm{~mL})$. Fraction H (489 mg) was again purified on a Si gel column ($20 \mathrm{~g}, 2 \times 17$ $\mathrm{cm})$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}[8: 2(100 \mathrm{~mL}), 6: 4(100 \mathrm{~mL}), 4: 6$ (100 $\mathrm{mL})$, 3:7 (100 mL), 2:8 (100 mL), 1:9 (100 mL)] and EtOAc (100 mL) to give fraction I ($240-260 \mathrm{~mL}$). Fraction I (25.3 mg) was further purified on a semipreparative HPLC system eluting with a 50 min linear gradient of MeCN (25 to 100\%) in $\mathrm{H}_{2} \mathrm{O}$ (flow rate: $3 \mathrm{~mL} / \mathrm{min}$) to afford compound $\mathbf{2}(4.6 \mathrm{mg})$. Compound 2 appeared as a brown spot ($\mathrm{R}_{\mathrm{f}} 0.55$, EtOAc); $[\alpha]^{24} \mathrm{D}$ $+23.1^{\circ}\left(\mathrm{c} 0.23, \mathrm{CHCl}_{3}\right)$, and $\mathbf{3}$ and $\mathbf{4}$ were both visualized as green spots with almost the same R_{f} value of 0.45 (EtOAc) on TLC plate; taxane $3[\alpha]^{24} \mathrm{D}+22.2^{\circ}$ (c $0.01, \mathrm{CHCl}_{3}$); taxane 4 $[\alpha]^{24} \mathrm{D}-57.3^{\circ}$ ($\mathrm{C} 0.16, \mathrm{CHCl}_{3}$). Their structures were fully established by NMR (Tables 2-4) and confirmed by HRMS. HRFABMS for 2: m/z $[\mathrm{M}+\mathrm{Na}]^{+} 517.24121 ; \mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{9} \mathrm{Na}$ requires 517.24135. HRFABMS for 3: m/z [M + Na] ${ }^{+} 611.24685$; $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{11} \mathrm{Na}$ requires 611.24683. HRFABMS for 4: $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ $\mathrm{Na}]^{+} 633.25234 ; \mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{13} \mathrm{Na}$ requires 633.25231.

Fraction C (3.6 g) was applied to a Si gel col umn ($108 \mathrm{~g}, 4.5$ $\times 18 \mathrm{~cm})$ with hexane-EtOAc [1:1 $(400 \mathrm{~mL})$, 3:7 (400 mL), 1:9 (400 mL)], EtOAc (600 mL), and EtOAc-MeOH (9:1, 400 mL) to yield fraction J ($1240-1520 \mathrm{~mL}$). Fraction J (1.25 g) was again purified on a Si gel column ($28 \mathrm{~g}, 2 \times 22.5 \mathrm{~cm}$) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ [1000:5 (200 mL), 1000: 10 (200 mL), 1000:15 (200 mL), 1000:20 (200 mL), 1000:25 (200 $\mathrm{mL}), 1000: 30(200 \mathrm{~mL}), 1000: 35(200 \mathrm{~mL}), 1000: 40(200 \mathrm{~mL})$, 1000:50 (200 mL)] to afford fraction K ($1640-1820 \mathrm{~mL}$). Fraction $\mathrm{K}(137.4 \mathrm{mg})$ was further purified on the preparative HPLC system eluting with a 50 -min linear gradient MeCN (25 to 100%) in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate of $18 \mathrm{~mL} / \mathrm{min}$ followed by
recrystallization to afford compound $\mathbf{5}(27.6 \mathrm{mg})$. It was shown to be a brown to black spot on TLC plate with $\mathrm{R}_{\mathrm{f}}=0.45$ (EtOAc); $[\alpha]^{24} \mathrm{D}+42.9^{\circ}\left(\mathrm{c} 0.02, \mathrm{CHCl}_{3}\right)$. The structure of 5 was fully elucidated by NMR (Table 5) and was supported by HRMS. HRFABMS for 5: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} 577.26255 ; \mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{11^{-}}$ Na requires 577.26248.

Acknowledgment. We thank the Natural Science and Engineering Research Council of Canada and the Center for Translational Research in Cancer for support via operating grants to L.O.Z.

References and Notes

(1) Kingston, D. G. I.; Molinero, A. A.; Rimoldi, J. M. Prog. Chem. Org. Nat. Prod. 1993, 61, 1-206.
(2) Appendino, G. Nat. 'Prod. Rep. 1995, 12, 349-360.
(3) (a) Zamir, L. O.; Nedea, M. E.; Belair, S.; Sauriol, F.; Mamer, O.; J acqmain, E.; J ean, F. I.; Garneau, F. X. Tetrahedron Lett. 1992, 33, 5173-5176; Tetrahedron Lett. 1992, 33, 6548. (b) The major metabolite of T. canadensis was also reported by Gunawardana, G. P.; Premachandran, U.; Burres, N. S.; Whittern, D. N.; Henry, R.; Spanton, S.; McAlpine, J. B. J . Nat. Prod. 1992, 55, 1686-1689.
(4) Zamir, L. O.; Nedea, M. E.; Zhou, Z.-H.; Belair, S.; Caron, G.; Sauriol, F.; J acqmain, E.; J ean, F. I.; Garneau, F. X.; Mamer, O. Can. J . Chem. 1995, 73, 655-665.
(5) Zamir, L. O.; Zhou, Z.-H.; Caron, G.; Nedea, M. E.; Sauriol , F.; Mamer, O. J. Chem. Soc., Chem. Commun. 1995, 529-530.
(6) Boulanger, Y.; Khiat, A.; Zhou, Z.-H.; Caron, G.; Zamir, L. O. Tetrahedron 1996, 52, 8957-8968.
(7) Zamir, L. O.; Zhang, J.; Kutterer, K.; Sauriol, F.; Mamer, O.; K hiat, A.; Boulanger, Y. Tetrahedron 1998, 54, 15845-15860.
(8) Zamir, L. O.; Nedea, M. E.; Zhou, Z.-H.; Caron, G.; Sauriol, F.; Mamer, O. Phytochemistry 1996, 41, 803-805.
(9) Zamir, L. O.; Balachandran, S.; Zheng, Y. F.; Nedea, M. E.; Caron, G.; Nikolakakis, A.; Vishwakarma, R. A.; Sauriol, F.; Mamer, O. Tetrahedron 1997, 53, 15991-16008.
(10) K obayashi, J.; Hosoyama, H.; Shigemori, H.; K oiso, Y.; I wasaki, S. Experientia 1995, 51, 592-595.
(11) Kabayashi, J.; Hosayama, H.; Katsni, T.; Yoshida, N.; Shigemori, H. Tetrahedron 1996, 52, 5391-5396.
(12) Hoemann, M. Z.; Velde, D. V.; Aube, J.; George, G. I. J . Org. Chem. 1995, 60, 2918-2921.
(13) Wicnienski, N. A.; Kelly, R. C.; Wuts, P. G. M. U.S. Patent 5821 363, issued 10/13/1998. Antineoplastic use and pharmaceutical compositions containing them, pp 1-107.
(14) Shen, Y.-C.; Chen, C.-Y.; Kuo, Y.-H. J . Nat. Prod. 1998, 61, 838840.
(15) Wang, X.; Shigemori, H.; K obayashi, J. Tetrahedron 1996, 52, 23372342.
(16) Tanaka, K.; Fuji, K.; Yokoi, T.; Shingu, T.; Li, B.; Sun, H. Chem. Pharm. Bull. 1994, 42, 1539-1541.
(17) Fuji, K.; Tanaka, K.; Li, B.; Shingu, T.; Yokoi, T.; Sun, H.; Taga, T. Tetrahedron 1995, 51, 10175-10188.
(18) Wang, X.-X.; Shigemori, H.; Kobayashi, J. Tetrahedron 1996, 52, 12159-12164.
(19) Shen, Y.-C.; Chen, C.-Y. Phytochemistry 1997, 44, 1527-1533.
(20) Zhou, J.-Y.; Zhang, P.-L.; Chen, W.-M.; Fang, Q.-C. Phytochemistry 1998, 48, 1387-1389.
(21) Yang, S.-J .; Fang, J .-M.; Cheng, Y.-S. Phytochemistry 1999, 50, 127130.
(22) Insight II, version 97.0; M olecular Simulations, Inc.: San Diego, CA.
(23) Viterbo, D.; Milanesio, M.; Appendino, G.; Saha, G. C. Acta Crystallogr., Sect. C 1997, 53, 1687.
NP990160S

[^0]: * To whom correspondence should be addressed. Tel.: +1 (450) 687-5010 ext. 4260. Fax: +1 (514) 481-2797. E-mail: Lolita.Zamir@iaf.uquebec.ca.
 ${ }^{+}$Université du Québec.
 \# Department of Chemistry, McGill University.
 ${ }^{\S}$ Biomedical Mass Spectrometry Unit, McGill University.

[^1]: a Mult, multiplicity: br, broad; d, doublet; m, multiplet; o, overlapping; q, quadruplet; s, singlet; t, triplet. The precision of the coupling

